GP-GAN: Towards Realistic High-Resolution Image Blending
نویسندگان
چکیده
Recent advances in generative adversarial networks (GANs) have shown promising potentials in conditional image generation. However, how to generate high-resolution images remains an open problem. In this paper, we aim at generating high-resolution well-blended images given composited copy-and-paste ones, i.e. realistic highresolution image blending. To achieve this goal, we propose Gaussian-Poisson GAN (GP-GAN), a framework that combines the strengths of classical gradient-based approaches and GANs, which is the first work that explores the capability of GANs in high-resolution image blending task to the best of our knowledge. Particularly, we propose GaussianPoisson Equation to formulate the high-resolution image blending problem, which is a joint optimisation constrained by the gradient and colour information. Gradient filters can obtain gradient information. For generating the colour information, we propose Blending GAN to learn the mapping between the composited image and the well-blended one. Compared to the alternative methods, our approach can deliver high-resolution, realistic images with fewer bleedings and unpleasant artefacts. Experiments confirm that our approach achieves the state-of-the-art performance on Transient Attributes dataset. A user study on Amazon Mechanical Turk finds that majority of workers are in favour of the proposed approach.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملStackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aimed at generating high-resolution photorealistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for textto-imag...
متن کاملPhotoSketch: Internet Image Montage
We present a system that composes a realistic picture from a simple freehand sketch annotated with text labels. The composed picture is generated by seamlessly stitching several photographs in agreement with the sketch and text labels; these are found by searching the Internet. Although online image search generates many inappropriate results, our system is able to automatically select suitable...
متن کاملFace Super-Resolution Through Wasserstein GANs
Generative adversarial networks (GANs) have received a tremendous amount of attention in the past few years, and have inspired applications addressing a wide range of problems. Despite its great potential, GANs are difficult to train. Recently, a series of papers (Arjovsky & Bottou, 2017a; Arjovsky et al. 2017b; and Gulrajani et al. 2017) proposed using Wasserstein distance as the training obje...
متن کاملEfficient and Accurate MRI Super-Resolution using a Generative Adversarial Network and 3D Multi-Level Densely Connected Network
High-resolution (HR) magnetic resonance images (MRI) provide detailed anatomical information important for clinical application and quantitative image analysis. However, HR MRI conventionally comes at the cost of longer scan time, smaller spatial coverage, and lower signal-to-noise ratio (SNR). Recent studies have shown that single image super-resolution (SISR), a technique to recover HR detail...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.07195 شماره
صفحات -
تاریخ انتشار 2017